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Abstract

This paper proposes and discusses a boundary element formulation for a particular class of non!local
damage models[ The formulation as well as the boundary element computational code developed during
this research have proven to be very simple and e.cient\ providing reliable information on the strains and
stresses in damage!softening models[ The numerical approach uses a _nite!grid to estimate the damage
values[ Some illustrative numerical examples\ which show the simplicity and versatility of the proposed
approach\ are included and discussed in detail[ Þ 0888 Elsevier Science Ltd[ All rights reserved[
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0[ Introduction

As indicated by Professor Lippman in the foreword of a book on damage mechanics "Lemaitre\
0881#\ failure prevention of machine parts and civil engineering structures is one of the main
objectives of the engineering science[ Conventional fracture mechanics allows the prediction of
situations in which a pre!existent crack will propagate[ This is why this theory has become one of
the most important branches of continuum mechanics[ However\ the description of the process of
transformation of microvoids and microdefects into a macrocrack is equally important[ This is the
goal of Continuum Damage Mechanics "CDM#[

The basic idea of CDM is the introduction of a new internal variable\ denoted damage\ and its
evolution law[ This variable characterizes the density of microvoids and microcracks of the
material[ The pioneering work of Kachanov "Kachanov\ 0847# described the _rst uniaxial model
of the damage process in metals subjected to creep[ Later\ the theory was extended to the three!
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dimensional case\ ductile damage and fatigue damage "see for instance the works of Rabotnov\
0852^ Lemaitre and Chaboche\ 0867^ Hult\ 0863^ Leckie and Hayhurst\ 0863^ Murakami\ 0872#[
Brittle damage models for materials such as concrete or rocks started to appear during the 0879s
"Mazars\ 0875^ Krajcinovic and Sumarac\ 0878^ Suaris\ 0876^ Lubliner et al[\ 0878# and the 0889s
"Liqing and Katsabanis\ 0886^ Sellers and Scheele\ 0885#[ Damage Mechanics concepts have also
been used for the analysis of reinforced concrete and steel frames with plastic hinges "Flo�rez!
Lo�pez\ 0887#[

Damage mechanics problems are\ of course\ solved numerically[ So far\ the Finite Element
Method "FEM# has been used for the majority of applications "Benallal et al[\ 0877^ Ma and
Kuang\ 0884^ Cervera et al[\ 0884#[ A recent work of Cerrolaza and Garc(�a "0886# presented the
analysis of tunnel excavation using the Boundary Element Method "BEM# combined with a brittle
model of damage[

The mathematical aspects are more important in damage modeling than they are in other
branches of material mechanics[ This is due to the fact that damage models need to describe strain!
softening behavior in order to characterize microscopic degradation processes[ A phenomenon
called {localization| occurs in structural analyses with strain!softening models[ Mathematically\
localization manifests as the possible appearance of an in_nite number of solutions\ i[e[ the problem
might be ill!posed[ In FEM formulations\ localization appears as an unacceptable mesh dependence
of the response[

Regularization techniques are therefore essential in CDM[ The goal of using these techniques is
to prevent\ or at least to control\ localization[ Some of those procedures are nonlocal damage
models "Pijaudier!Cabot and Bazant\ 0876#^ Saudiris and Mazars\ 0877#\ gradient!dependent
models "Belytschko and Lasry\ 0877#\ the use of Cosserat media "De Borst\ 0889# and progressive
localization "Abeyaratne and Knowles\ 0889^ Billardon and Flo�rez!Lo�pez\ 0880#[

This paper proposes a Boundary Element Formulation for a particular class of nonlocal damage
models] the grid!damage models[ This regularization procedure was proposed in a paper by Hall
and Hayhurst "0880# and described also by De Vree et al[ "0884#[ In the latter\ nonlocal and grid!
damage models were used in numerical analyses of structures by the FEM[ The present paper
combines the results described in those two references with the algorithms proposed in Cerrolaza
and Garc(�a "0886#[

Nonlocal or grid!damage analyses by the FEM require extensive modi_cations of the standard
codes[ So far\ only homemade\ highly specialized programs perform these analyses[ Furthermore\
the existing algorithms are not very e.cient and are particularly expensive in terms of computer
memory requirements[ On the other hand\ the BEM appears to be the most natural approach for
grid!damage analyses[ It will be shown in this paper that the BEM results in a very simple
formulation for the analysis of this kind of problems and more importantly\ that any existing BE
program can be modi_ed\ with a very small computational e}ort\ to include grid!damage models[
In addition\ all the usual advantages of the BEM over the FEM could be listed[

In the following\ an overview of CDM models is given\ emphasizing the necessity to use nonlocal
models[ This short review is essentially intended for those readers who are interested in the BEM
but that are not necessarily specialists in CDM[ Then\ a brief description of the BEM\ devoted to
readers working on CDM exclusively\ is included[ Those reviews are followed by the BE for!
mulation for grid!damage models[ Some two!dimensional numerical examples are presented and
discussed in the _nal section of the paper[
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1[ Continuum damage mechanics

1[0[ Local dama`e approach

Continuum Damage Mechanics is based on the introduction of an additional internal variable]
the damage\ which characterizes the state of deterioration of a volume element in a continuum[
Let A be the area of the intersection of a plane with the volume element and let Ad be the e}ective
area of the intersections of all microcracks or microvoids in the element with A[ The damage Dn

in this volume element and in the direction de_ned by the normal n to the area A can be expressed
as]

Dn �
Ad

A
"0#

This variable can take values between zero "intact element# and one "broken element#[ The
hypothesis of isotropic damage consists of assuming that Dn is approximately the same whatever
the normal n is[ In such a case the state of damage can be represented by a scalar]

Dn 3 D [ n "1#

Coupling between isotropic damage and elasticity can be expressed by introducing some hypotheses
"Lemaitre and Chaboche\ 0867#\ in the following way]

sij �"0−D#Hijklokl "2#

where Hijkl is the conventional elastic tensor[
For brittle materials "Marigo\ 0871^ Brekelmans et al[\ 0881#\ damage evolution can be deter!

mined as in elastoplastic models with isotropic hardening[ A {damage function| is then introduced[
This function depends on some adequate invariant of the strain tensor oeq called {equivalent strain|\
and on a hardening term K"D#]

f � oeq−K"D# "3#

Damage remains constant if the function f is negative or if it is decreasing and it evolves if f is
equal to zero[ The term K must ful_ll some conditions so that Dþ is always positive or zero[

Dþ × 9 if f � 9 and f¾� 9

Dþ � 9 if f ³ 9 or f¾³ 9 "4a#

Alternatively the damage evolution law "4a# can be written as follows "see Flo�rez!Lo�pez et al[\
0883#]

D � K−0"Max oeq# for 9 ¾ D ¾ 0 "4b#

where Max oeq is the maximum value that the equivalent strain has taken since the beginning of
the loading "or since any instant that corresponds to D � 9# until the present time "i[e[ the one for
which the damage is being calculated#[ Formulations "4a# and "4b# are equivalent[ The form "4b#
of the evolution law presents some advantages over "4a# during the numerical implementation of
the model[
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It can be noticed that damage depends only on the strain history of the particular volume
element under consideration[ This is why this approach is called {local|[

1[1[ Localization and mesh dependence of the response

Local damage models lead to unacceptable mesh dependence of the structural response when
they are used with the _nite element method[ In this section\ this mesh dependence is illustrated
with the help of a very simple uniaxial example[

Let us consider a uniaxial continuum occupying the interval ð9\ LŁ subjected to the following
boundary conditions] U"9# � 9 and U"L# � Ud"t# where Ud"t# is a positive and monotonic function
of time[ The material of this structure obeys the damage model described in the previous section
with oeq � o and K"D# � M = D where M is a positive constant "see Fig[ 0#[ This solid is discretized
into two _nite elements\ with linear displacements and constant strains\ such as indicated in Fig[
1[ It can be noticed that\ in this particular case\ the _nite element solution corresponds to the exact
solution[ The equilibrium between the two elements can be expressed simply by stating that stresses
must be constant and equal in both elements[ This equilibrium condition can be represented as a

Fig[ 0[ Stress as a function of the strain in a brittle damage model[

Fig[ 1[ Two!element model subjected to imposed displacements[
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Fig[ 2[ Constitutive laws and equilibrium conditions for the model of Fig[ 1[

horizontal line in a graph where the constitutive equations of both elements are simultaneously
represented "see Fig[ 2#[

Let us consider an increment in the imposed displacement such that the strain in the _rst element
"denoted as o0 in Fig[ 2# corresponds to a point that has not yet reached the peak of the curve in
Fig[ 2[ Then\ there is only one solution that veri_es the equilibrium condition and this solution
imposes that the strain in the second element "denoted as o1 in Fig[ 2# must be equal to the strain
in the _rst element[

Let us now consider an increment of the displacement such that the strain in the _rst element
corresponds to a point after the peak of the curve in Fig[ 2[ In such a case\ there are two solutions
that verify the equilibrium condition[ The _rst solution corresponds to a constant state of strains
and damage throughout the solid[ The second solution imposes an elastic unloading in the second
element and a discontinuous state of damage[ This discontinuity should not be confused with those
that appear in _nite element analyses due to the discretization of the solid[ That kind of dis!
continuity tends to disappear with the re_nement of the mesh when the _nite element solution
tends to the exact solution\ which is not the case here[ Remember that in this very simple example\
the model with two elements gives exact solutions[

The appearance of discontinuities in the strain and damage\ when there are no other sources of
discontinuities such as change of material\ is called in the literature {localization|[ The two force!
displacement curves that characterize the global response of the structure are shown in Fig[ 3[ It
can be easily found that the failure of the solid "D equal to one in at least one element# corresponds
to a displacement equal to M = L for the homogeneous solution and M = L0 for the localized solution[
However\ the length L0 of the localization zone is a property of the mesh and therefore the solution
is mesh!dependent[ This very simple example also shows that local damage models can lead to
problems that may have an in_nite number of solutions since any length L0 between zero and L
could be used in the FE mesh[ It is said then that the problem is {ill posed|[
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Fig[ 3[ Force as a function of the displacement for the model of Fig[ 1[

In De Vree et al[ "0884#\ the same kind of mesh dependence for two!dimensional problems
solved by the _nite element method is shown[

1[2[ Nonlocal dama`e models

The mesh dependence shown in the example of the previous section is obviously unacceptable[
Thus\ some kind of regularization is needed if a damage model is to be used[ In this section\ one
of the alternatives that have been proposed in the literature is described[ Speci_cally\ the case of
nonlocal damage models is considered[

The basic hypothesis of the nonlocal damage regularization is that mesh dependence and ill!
posedness of the problem are due to localization of damage and strains rather than being one of
the symptoms of the mathematical ill!posedness of the problem[ Therefore\ the idea is to modify
the constitutive law in such a way that localization "or damage discontinuities# is avoided or at
least controlled[ This is done by neglecting the local action principle[ Damage is now assumed to
depend not only on the state of the particular volume element but also on the state in a limited
zone enclosing the speci_c point under consideration[ A nonlocal damage model can be formulated
as follows "Pijaudier!Cabot and Bazant\ 0876^ Saudiris and Mazars\ 0877#]

sij � "0−D#Hijklokl "state law#

f � o¹eq−K"D# "damage function# "5#

where o¹eq represents an average of oeq in the neighborhood of the volume element[ It can be noticed
that only the damage evolution law is modi_ed with respect to the local modeling[ The way in
which the average of equivalent strain is calculated leads to di}erent nonlocal models[ For instance\
in Pijaudier!Cabot and Bazant "0876#\ the following expression is proposed]

o¹eq �
0

Vr"x# gggv

a"s−x#oeq"x# dv"s#^ Vr"x# � gggv

a"s−x# dv"s# "6#

where a is an empirical weighting function\ x and s are the coordinate vectors and V is the volume



R[ Garc(�a et al[ : International Journal of Solids and Structures 25 "0888# 2506Ð2527 2512

of the body[ With this model\ any concentration of strains will have a transfer to the neighborhood
that will prevent damage localization[ This kind of nonlocal model seems to lead to continuum
damage _elds "De Vree et al[\ 0884#[

1[3[ Grid dama`e models

Another variation of the nonlocal approach is constituted by the {grid damage models| "Hall
and Hayhurst\ 0880#[ This can be considered as a simpli_cation of the strategy described in section
1[2 and is inspired in the observation that many materials have a characteristic volume where
damage is almost uniform[ In this section the grid method will be presented as described in De
Vree et al[ "0884# and in section 3 of this paper a boundary element formulation for this nonlocal
model will be proposed[

In grid models\ a regular cell grid is placed on the solid under consideration[ The measures of
the cell are equal to a characteristic material parameter l[ Within each cell the damage state is
assumed to be constant and depends on the average of the equivalent strains oeq in the cell[ This
can be expressed as

sij � "0−D#Hijklokl "state law#

D"x# � Dk if x $ Vk

f k � o¹k
eq−K"Dk# "7#

where Vk denotes the domain of the k!th cell of the grid\ Dk is the damage of the cell\ f k is the
damage function of the cell and o¹k

eq is the equivalent strain of the cell\ calculated as]

o¹k
eq �

0

Vk gggvk

oeq"x# dv "8#

It is important to underline that this grid is independent of the discretization used for the
numerical resolution of the problem "see Fig[ 4#[ In De Vree et al[ "0884#\ a _nite element
formulation for this kind of model is presented and the convergence of the solution with the
re_nement of the mesh is shown for some two!dimensional examples[ Comparisons between local
and grid damage models are also shown in that paper[ Nonlocal grid models are very simple and
can be an e}ective engineering tool for the evaluation of the safety of structures[

2[ The boundary element method

The boundary element method is a well!known numerical procedure for the resolution of integral
equations with boundary conditions[ A brief summary of the method will be included herein for
consistency[ The reader interested in the details of the formulation is referred to Brebbia et al[
"0873#^ Crouch and Start_eld "0872# and Kane "0883#\ among other related books on the subject[

For linear elastic problems\ the method is based on the Betti|s reciprocal theorem that is applied
in the following way]

Let V be a body with boundary S\ the part of S where the displacements Ud
i are known is

denoted Su\ and the part where known tractions Td
i are applied\ is represented by St[ The problem\
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Fig[ 4[ Finite element mesh and cell grid[

called {real|\ consists in the calculation of the displacement\ stress and strain _elds due to these
external actions[ The resolution of the real problem requires the statement of an auxiliary problem\
called {_ctitious|[ In this problem a body with the same geometry "de_ned by V and S# of the real
problem is subjected to a unit concentrated load on a source point P of the solid in the direction
of an axis xi[ The application of the reciprocal theorem for the real and _ctitious problem leads
to]

ui"P# � ggS

ðUij"P\Q#tj"Q#−Tij"P\Q#uj"Q#Ł dS "09#

where ui"P# represents the displacement of a point P in the direction of xi\ the capital Uij and Tij

are the displacements and tractions on a point Q of the surface of the body\ in the _ctitious
problem\ and in the direction xj[ These terms have been calculated analytically for an in_nite
medium and are called {Kelvin solutions|]

Uij"P\Q# �
0

7pG"0−y#$"2−3y# log 0
0
r1dij¦r\ir\j%

Tij"P\Q# � −
0

3p"0−y#
0
r
"ð"0−1y#dij¦1r\ir\jŁr\n−"0−1n#"r\inj−r\jni# "00#

where n and G are coe.cients of the isotropic elastic law and r is the distance between the points
P and Q[

Equation "09# allows the computation of the displacements\ and therefore of the strains and
stresses\ of the real problem in any point of the body as a function of the values of the displacements
and tractions on the boundary of the solid[ However\ for the real problem\ displacements and
tractions are not known simultaneously in any point of the surface S[ For the calculation of the
unknown terms\ eqn "09# is also applied to the points of the body|s surface[ Nonetheless\ if P is
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on the boundary\ a singularity occurs in the integration as the point Q is approached "i[e[ the term
Tij"P\ Q# becomes in_nite#[ Therefore numerical integration of "09# must be done by using special
quadrature formulas "Gray\ 0882^ Chen et al[\ 0889^ Cerrolaza and Alarco�n\ 0878#[

For the numerical determination of the unknown in the boundary\ this surface is discretized in
elements that are essentially the same as _nite elements except that their dimension is reduced by
one[ These elements can be described as follows]

ti � Njb
j
i \ ui � Nja

j
i "01#

where Nj are the interpolation functions\ a j
i are the nodal displacements on the boundary and b j

i

the nodal tractions[
The application of the discretized version of "09# to each node of the body|s surface leads to a

linear matrix equation of the form]

ðAŁ"a# � ðBŁ"b# "02#

where ðAŁ and ðBŁ are coe.cient matrices[ In the present context it is important to underline that
these matrices depend on the elastic properties of the material through the constants G and n in
"00#[ Equation "02# plus the boundary conditions of the real problem\ allow for the computation
of the unknown terms of "a# and "b#[

After the computation of the nodal unknowns\ displacements\ strains or stresses can be calculated
at any point of the body[

3[ Boundary element formulation for grid damage models

3[0[ Formulation

Let us consider an isotropic elastic damageable body that obeys the constitutive law described
in section 1[3[ For each cell in the structure\ two problems are again under consideration]

"a# The real one that consists of a cell under the boundary conditions imposed by the surrounding
cells and\ if the cell in question is on the surface of the structure\ the external actions[

"b# The _ctitious one that involves the same cell of an elastic damageable material with a constant
state of damage equal to Dk and subjected to a unitary force such as described in section 2[

Application of eqn "09# for each cell k of the grid leads to]

ui"P# � ggVk

ðUij"P\Q ^Dk#tj"Q#−Tij"P\Q ^Dk#uj"Q#Ł dS P $ Vk Q $ Sk "03#

where Vk represents again the k!cell of the grid and Sk its boundary[
In the conventional boundary element method\ displacements or tractions are known on the

boundary under consideration[ This is not the case for the cells where neither displacements nor
tractions are known\ if a surface of the cell does not coincide with the border of the body[ However\
the boundary conditions can be substituted by the compatibility and equilibrium equations that
state the continuity of displacements and tractions across the boundary Sk

l between two adjacent
cells k and l]
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u¦
i "Q# � u−

i "Q# t¦i "Q# � t−i "Q# [Q $ Vk K Vl � Sk
l "04#

where the symbols ¦ or − indicates a quantity in the cell k or l\ respectively[
It must be underlined that eqn "03# depends on the damage of the cell because this variable

modi_es the elastic properties of the material\ i[e[ the elastic constant G in "00# must be substituted
by "0−Dk#G when used for a damaged cell k[

Therefore\ eqn "03#\ the boundary conditions\ the compatibility and equilibrium eqns "04# and
the damage evolution law of each cell "05# de_ne a boundary element formulation for a grid!
damage model[

f k � o¹k
eq−K"Dk#

6
Dþk � 9 if f k ³ 9 or f¾ k ³ 9

Dþk × 9 if f k � 9 and f¾ k � 9
"05#

3[1[ Numerical implementation

A conventional step!by!step procedure is adopted for the numerical resolution of the problem[
Then\ the damage evolution law "4a# is discretized as follows]

6
f k"o\Dk# � 9 if damage is active in cell k

DDk � 9 otherwise
"06#

where DDk represents the increment of damage during the step[ Here\ the terms o and Dk are the
values of these variables at the end of the step[ If the form "4b# of the damage evolution law is
used\ then discretization consists\ simply\ in the calculation of Max o¹eq taking into account the
equivalent strain only at the end of the steps instead of considering the entire strain history[

Every cell is discretized using the boundary elements "see Fig[ 5#[ Therefore\ we have for each
step and for each cell

ðAk"Dk#Ł"ak# � ðBk"Dk#Ł"bk# "07#

The compatibility and equilibrium eqns "04# can be taken into account by an adequate assem!
blage of matrices ðAkŁ and ðBkŁ of each cell into the global matrices ðAŁ and ðBŁ resulting in a system
of equations of the conventional form]

ðA"D#Ł"a# � ðB"D#Ł"b# "08#

The nonlinear system of equations composed by "06\ 08# can be solved by a conventional direct
iteration algorithm in which the computation of the state of the body "U"x#^ D"x## at a time ti is
obtained by the following procedure]

"a# The _eld D"x# � D9 "damage _eld at the iteration zero# is taken as the damage _eld at time
ti−0[

"b# The displacement _eld U"x# � Uj "displacement _eld at the iteration j# is computed by the
resolution of "07# using the damage _eld at the iteration j−0[
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Fig[ 5[ Boundary element mesh[

"c# The damage _eld D"x# � D j "damage _eld at the iteration j# is calculated by the resolution of
"06# using the displacement _eld at the iteration j[

"d# Convergence of the algorithm is checked[ If there is no convergence\ a new iteration is needed
starting by step "b#[

If the form "4b# of the damage evolution law is chosen\ then step "c# is straightforward\ the
maximum equivalent strain is calculated taking into account only the set of values at the end of
each step[ Otherwise\ i[e[ if expression "4a# is used\ a predictor!corrector algorithm should be used[
This consists in the evaluation of the damage function f"Dk\ o¹eq# with the damage at the beginning
of the step and the equivalent strain at the end of the step[ If this function is negative or zero then
damage remains constant during the step\ otherwise the damage at the end of the step is computed
making the damage function equal to zero[

4[ Numerical examples

4[0[ De_nition of the dama`e function

This section presents and discusses two numerical examples analyzed with the approach proposed
in this work[

A computer program\ based on the formulation and the algorithm described in section 3\ was
developed[ The model proposed by Mazars "0875# was adapted to the grid scheme presented in
section 1[3 and included in the program[ This was done by using the following expressions]

oeq � zðoIŁ1¦ðoIIŁ1¦ðoIIIŁ1 K−0"z# � atFt"z#¦acFc"z# "19#

where
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Ft"z# � 0−
o9"0−At#

z
−

At

exp ðBt"z−o9#Ł
^

Fc"z# � 0−
o9"0−Ac#

z
−

Ac

exp ðBc"z−o9#Ł
[

at\ ac\ o\ At\ Ac\ Bt and Bc are material constants[
The material "concrete# properties used in the simulations are the following]

Gi � initial shear modulus � 02\063[4 MPa
ni � initial Poisson|s ratio � 9[104
At � parameter for internal traction evolution law � 9[6747
Bt � parameter for traction damage evolution law � 7746[28
Ac � parameter for compression damage evolution law � 0[9156
Bc � parameter for compression damage evolution law � 129[60
od9 � initial damage threshold strain � 9[9990018

4[1[ Square plate subjected to vertical displacements

The _rst example discussed herein is a typical square plate subjected to vertical displacements
at the right side\ while the left side is considered _xed[ The upper and lower sides are considered
as traction free[ An internal grid of twenty!_ve subregions "cells# having the same size\ were
considered in order to calculate the equivalent strain at the four internal points de_ned at each
subregion\ i[e[ the equivalent strain was calculated at 099 internal points in the plate[ Of course\
the user can de_ne as many internal points as desired in order to re_ne the results[ Each internal
subregion is de_ned with four boundary linear elements "1!noded elements# thus yielding a total
of 59 boundary elements and 25 nodal points[ Figure 6 shows the geometry and the boundary
conditions imposed to the problem\ as well as the position of the internal points[

The vertical displacement imposed at the right side is d � −9[904 cm\ which is stepwise modi_ed
with increments of 09) of the displacement value until the _nal value is reached[

As it is well known\ this kind of problem produces a diagonal traction!stress!band from the left!
upper corner to the right!lower corner of the domain\ which causes the degradation of the material
under consideration[ Thus\ the main values of the damage index are expected at these corners[
Figure 7 illustrates the distribution of the damage values at an increment of 69) of the prescribed
displacement and Fig[ 8 shows the map of equivalent strains[

Note that the damage distribution is located around the described diagonal traction!band\ as
expected[ Figure 09 displays the damage values obtained when the total value "099)# of the
vertical displacement is applied to the plate[ Values of the damage index up to 9[6 are obtained
before the failure of the plate[

This simple example shows that the proposed approach is able to detect the critical zones of the
domain\ based on a simple and e.cient scalar non!local damage model\ as discussed previously[

Several numbers of internal points were also used in order to see how this number can a}ect the
results[ The analysis of the numerical results showed that the damage values were essentially the
same when using a larger number of internal points "8 and 05 internal points at each cell#[

Also\ sensitivity analyses were carried out to assess the robustness of the procedure and its
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Fig[ 6[ Square plate subjected to vertical displacements] geometry\ boundary conditions and internal points "3 boundary
elements for subregion#[

independence on the number of boundary elements used to discretize the domain[ The same
example is now discretized by using two more re_ned boundary!element meshes[ These new meshes
were de_ned with the same number of subregions "14 internal cells#\ but now each one of them
was de_ned with both eight and twelve linear boundary elements[ Also\ four internal points by cell
were used in these meshes\ as displayed in Fig[ 00[

Figures 01 and 02 show the damage distribution for the d!element!cell mesh at 69) and 099)
of the imposed displacement[ Note that the results are quite similar to those obtained when using
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Fig[ 7[ Damage distribution in square plate "3 boundary elements for subregion#] 69) of the total displacement[

Fig[ 8[ Equivalent strains in square plate] 69) of the total imposed displacements "values are multiplied by 0[9 E4#[
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Fig[ 09[ Damage distribution in square plate "3 boundary elements for subregion#] 099) of the total displacement[

a more simple mesh\ thus con_rming that the numerical algorithm is stable and independent of
the degree of re_nement of the boundary element mesh[

4[2[ L!shaped plate

This example studies the behavior of an L!shaped plate which is subjected to horizontal dis!
placements on its left side\ while the right side of the plate is assumed to be _xed[ Now\ sixteen
internal subregions "cells# are used to discretize the domain\ while it was necessary to de_ne 21
linear boundary elements and 10 nodal points\ as shown in Fig[ 03[

In this example\ nine internal points were used in the subregions close to the singular point
"internal corner#\ since it is expected that the highest values of the damage will be obtained at these
cells[ Four internal points were used in the rest of the cells[ Figure 04 displays the damage
distribution at 59) of the total imposed displacement\ showing a clear concentration of high
damage values in zones close to the singular point[ Figure 05 shows the map of equivalent strains[

Figure 06 displays the damage distribution in the L!shaped plate but now at 099) of the
imposed displacement[ Note that damage values close to 9[7 are obtained before the failure of the
plate[

It should be remarked here that sensitivity analyses were carried out to assess the result inde!
pendence with respect to the boundary discretization[ The damage values obtained are in good
agreement with those obtained with the mesh shown in Fig[ 03[ The di}erences are of less than
4)[
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Fig[ 00[ Square plate] geometry\ boundary conditions and internal points "7 boundary elements for subregion#[

5[ Concluding remarks

It has been shown in the literature\ and illustrated in this paper with two simple examples\ that
the use of continuum damage mechanics requires the use of some regularization procedure[ The
implementation of these procedures in standard structural analysis programs is therefore a priority
if damage models are to be used in industrial applications[ Nonlocal and grid models are among
the most important regularization schemes but their implementation in FE codes requires extensive
modi_cations of the programs and the storage of a signi_cantly larger amount of data with respect
to local models[
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Fig[ 01[ Damage distribution in square plate "7 boundary elements for subregion#] 69) of the total displacement[

Fig[ 02[ Damage distribution in square plate "7 boundary elements for subregion#] 099) of the total displacement[
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Fig[ 03[ L!shaped plate subjected to horizontal displacements] geometry\ boundary conditions and internal points[

On the other hand\ it has been shown in this paper that any standard BE program can be
adapted to damage analysis of structures using grid models with very little computational e}ort[
Very simple preprocessors can prepare the grid from the geometry of the structure[ Re_nements
of the solution can be made very easily\ by increasing the number of the mesh nodes on the grid\
and the number of integration points in the cells[ In summary] for the particular cases considered
in this paper\ it is clear that the BEM shows notable advantages over any other numerical method[
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Fig[ 04[ Damage distribution in L!shaped plate] 59) of the total displacement[

Fig[ 05[ Equivalent strains in L!shaped plate] 59) of the total imposed displacements "values are multiplied by 0[9 E4#[
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Fig[ 06[ Damage distribution in L!shaped plate] 099) of the total displacement[

Only two!dimensional examples were presented in this paper but it is evident that the devel!
opment of a program for the three!dimensional case could also be obtained from the existent codes
without di.culty[ It is the opinion of the authors that in the general three!dimensional case\ the
advantages of the BE formulation proposed in this paper over the FE methods currently used
would be signi_cantly ampli_ed[

However\ it is clear that the framework considered in this work is restricted "grid!damage and
time!independent models without plasticity# and that the extension to more general cases are still
to be done[ Therefore\ the remarks of the two previous paragraphs are valid for the very particular
cases analyzed in this paper[

Acknowledgements

The authors wish to express their acknowledgement to the C[D[C[H[ of the Central University
of Venezuela "Caracas#\ the C[D[C[H[T[ of the University of Los Andes "Me�rida# and CONICIT
of Venezuela for their support to this research[

References

Abeyaratne\ R[\ Knowles\ J[\ 0889[ On the driving traction acting on a surface of strain discontinuity in a continuum[
J[ Mech[ Phys[ Solids 27\ 234Ð259[



R[ Garc(�a et al[ : International Journal of Solids and Structures 25 "0888# 2506Ð2527 2526

Belytschko\ T[\ Lasry\ D[\ 0877[ Localization limiters and numerical strategies for strain!softening materials[ In]
Mazars\ J[\ Bazant\ Z[P[ "Eds[#\ Strain Localization and Size e}ect due to cracking and damage France!U[S[
workshop[

Benallal\ A[\ Doghri\ I[\ Billardon\ R[\ 0877[ An integration algorithm and the corresponding consistent tangent operator
for fully coupled elastoplastic and damage equations[ Communications in Applied Numerical Methods 3\ 620Ð639[

Billardon\ R[\ Flo�rez!Lo�pez\ J[\ 0880[ On a damage!softening model with progressive localization[ In] Proc[ II Pan
American Congress of Applied Mechanics[ Valparaiso\ Chile[

Brebbia\ C[A[\ Telles\ J[C[\ Wrobel\ L[\ 0873[ Boundary element techniques] theory and applications in engineering\
Springer Verlag\ Berlin[

Brekelmans\ W[A[M[\ Schreurs\ P[J[G[\ De Vree\ J[H[P[\ 0881[ Continuum damage mechanics for softening of brittle
materials[ Acta Mech[ 82\ 022Ð032[

Cerrolaza\ M[\ Alarco�n\ E[\ 0878[ A bicubic transformation for the numerical evaluation of Cauchy Principal Value
integrals[ Int[ J[ of Num[ Meth[ in Eng[ 17"0#\ 876Ð888[

Cerrolaza\ M[\ Garc(�a\ R[\ 0886[ Boundary elements and damage mechanics to analyze excavations in rock mass[ J[ of
Eng[ Anal[ with Bound[ Elem[ 19\ 0Ð05[

Cervera\ M[\ Oliver\ J[\ Faria\ R[\ 0884[ Seismic evaluation of concrete dams via continuum damage models\ Earthquake
Eng[ and Struct[ Dyn[ 13\ 0114Ð0134[

Chen\ Z[\ Ailor\ M[\ Gray\ L[ J[\ 0889[ Interior point evaluation in the boundary element method\ Eng[ Analysis with
Bound[ Elem[ 02\ 190Ð197[

Crouch\ S[L[\ Star_eld\ A[M[\ 0882[ Boundary element methods in solid mechanics\ George Allen + Unwin Ltd[
"Publish[#\ London[

De Borst\ R[\ 0889[ Simulation of localization using Cosserat Theory[ In] N[ Bicanic\ H[ Mang "Eds[#\ Conf[ on
Computer Aided Analysis and Design of Concrete Structures[ Pineridge Press Pub[\ 820Ð833[

De Vree\ J[H[P[\ Brekelmans\ W[A[M[\ Van Gils\ M[A[J[\ 0884[ Comparison of nonlocal approaches in continuum
damage mechanics[ Comp[ + Struc[ 44\ 470Ð477[

Flo�rez!Lo�pez\ J[\ 0887[ Continuum damage mechanics and frame analysis[ Eur[ J[ Mech[ 06\ 2[
Flo�rez!Lo�pez\ J[\ Benallal\ A[\ Geymonat\ G[\ Billardon\ R[\ 0883[ A two!_eld _nite element formulation for elasticity

coupled to damage[ Computer Methods in Applied Mechanics and Engineering 003\ 2Ð3[
Gray\ L[J[\ 0882[ Symbolic computation of hypersingular boundary in integrals[ In] Kane\ Maier\ Tosaka\ Atluri "Eds[#\

Advances in Boundary Element Techniques[ Springer Verlag\ Berlin[
Hall\ F[R[\ Hayhurst\ D[R[\ 0880[ Modelling of grain size e}ects in creep crack growth using a nonlocal continuum

damage approach[ Proc[ R[ Soc[ Lond[ A 322\ 394Ð310[
Hult\ J[\ 0863[ Creep in continua and structures[ In Leman\ J[L[\ Ziegler\ F[ "Eds[#\ Topics in Applied Continuum

Mechanics\ Springer\ Berlin\ pp[ 026Ð044[
Kachanov\ L[M[\ 0847[ On creep rupture time[ IZV[ AKAD[ NAUK[ SSSR 7\ 15Ð20[
Kane\ J[\ 0883[ Boundary element analysis in engineering continuum mechanics[ Prentice Hall\ Englewood Cli}s\ New

Jersey[
Krajcinovic\ D[\ Sumarac\ D[\ 0878[ A mesomechanical model of brittle deformation process[ J[ Appl[ Mech[ 45\ 40Ð

51[
Leckie\ F[A[\ Hayhurst[\ H[\ 0863[ Creep rupture of structures[ Proc[ R[ Soc[ London\ Ser[ A 139\ 212Ð236[
Lemaitre\ J[\ 0881[ A Course on Damage Mechanics[ Springer!Verlag\ Berlin[
Lemaitre\ J[\ Chaboche\ J[!L[\ 0867[ Aspect phe�nome�nologique de la rupture par endommagement[ J[ Me�canique

Applique�e 1\ 2[
Liqing\ Liu\ Katsabanis\ P[D[\ 0886[ Development of a continuum damage model for blasting analysis[ Int[ J[ Rock[

Mech[ Min[ Sci[ 23\ 106Ð120[
Lubliner\ J[\ Oliver\ J[\ Oller\ S[\ On½ate\ E[\ 0878[ A plastic!damage model for concrete[ Int[ J[ Solids Structures 14\ 188Ð

215[
Ma\ F[\ Kuang\ Z[B[\ 0884[ Continuum damage mechanics treatment of constraint in ductile fracture[ Engng Fracture

Mech[ 40\ 504Ð517[
Marigo\ J[J[\ 0871[ Etude nume�rique de l|endommagement[ Bull[ D[E[R[ Electricite� de France 1\ 16Ð37[
Mazars\ J[\ 0875[ A model of unilateral elastic damageable material and its application to concrete[ In] Whittmann\

F[H[ "Ed[#\ Proc[ of Fracture Toughness and Fracture Energy of Concrete[ Elsevier\ 50Ð60[



R[ Garc(�a et al[ : International Journal of Solids and Structures 25 "0888# 2506Ð25272527

Murakami\ S[\ 0872[ Notion of continuum damage mechanics and its application to anisotropic creep damage theory[
J[ Engng Mat[ 094\ 88Ð094[

Pijaudier!Cabot\ G[\ Bazant\ Z[P[\ 0876[ Nonlocal damage theory[ J[ Engng Mech[ 002\ 0401Ð0422[
Rabotnov\ I[N[\ 0852[ On the equations of state for creep[ In] Progress in Applied Mechanics*the Prager Anniversary

Volume\ pp[ 296Ð204[
Saudiris\ C[\ Mazars\ J[\ 0877[ A multiscale approach to distributed damage and its usefulness for capturing structural

size e}ects[ In] Mazars\ J[\ Bazant\ Z[P[ "Eds[#\ Strain Localization and Size e}ect due to cracking and damage
France!U[S[ workshop\ pp[ 280Ð392[

Sellers\ E[\ Sheele\ F[\ 0885[ Prediction of anisotropic damage in experiments simulating minig in witwatersrand quartzite
blocks[ Int[ J[ Rock[ Mech[ Min[ Sci[ 22\ 548Ð569[

Suaris\ W[\ 0876[ A damage theory for concrete incorporating crack growth characteristics[ In] Desai et al[ "Eds[#\
Constitutive laws for engineering materials[ Elsevier\ pp[ 820Ð827[


